Power, Product, and Quotient Rule Practice

For each of the following, determine if the easiest way to find the derivative: power, product, or quotient rule. If the easiest way is to rewrite the function to use the power rule, then rewrite the function. Find the derivative of each function.

1.
$$y = 2x^{-4}(x+6)$$

$$2. \ \ y = \frac{\sec x}{x^5}$$

3.
$$y = \frac{2}{x^3} - 4x + \frac{1}{5\sqrt[4]{x}}$$

4.
$$y = \frac{3x^5 - 6x^7 + x - 2}{x^4}$$

5.
$$y = \cot x \csc x$$

6.
$$y = \frac{5}{\sqrt[10]{x^1}}$$

$$7. y = \frac{4x^{\frac{2}{5}}}{x^2}$$

8.
$$y=(2x-x^2)(x+1)$$

- 1. Graph $f(x) = x^2 + 2x 8$ and g(x) = 4x + 5.
- 2. Find the derivative of f(x).
- 3. Find the coordinate(s) of any points that have a tangent line that is parallel to g(x).

- 4. Write the equation of the tangent line parallel to g(x).
- 5. Graph the tangent line.
- 6. Graph $g(x) = -x^3 5x^2 2x + 8$.
- 7. Use the calculator to determine the coordinates of any relative maximums or minimums.

- 8. Find the derivative of g(x).
- 9. What type of lines will be tangent at the relative maximums and minimums? What will the slope of these lines be?
- 10. Algebraically determine the coordinates of the points that have horizontal tangents.

- 12. a. Find f''(x) (the second derivative: the derivative of the derivative) of $f(x) = x^4 + 3x^3 2x^2 + 8x 9$.
 - b. Find f''(x)
- 13. A ball is dropped from a height of 100 ft, its height s at time t is given by the position function $s = -16t^2 + 100$, where s is measured in feet and t is measured in seconds. Find the average velocity over the following intervals.
- a. [1,2]

- b. [1,1.5]
- b. If a velocity is negative, what does that tell us?
- 14. At t=0, a diver jumps from a diving board 32 feet above the water. The position of the diver is given by $s(t) = -16t^2 + 16t + 32$ where s is measured in feet and t in seconds.
- a. When does the diver hit the water?

b. What is the diver's velocity at impact?

15. A projectile is shot upward from a cliff 200 meters above ground with an initial velocity of 120 meters per second. What is its velocity after 5 seconds given its position function is $s(t) = -4.9t^2 + v_0t + s_0$.